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Abstract
The retina decomposes visual stimuli into parallel channels which encode different features 
of the visual environment, including light increments, and decrements, edge orientation and 
direction and colour. Central to this parallelisation is the excitatory feedforward network 
composed sequentially of photoreceptors, bipolar cells and ganglion cells. Two-photon (2P) 
imaging with an electrically tuneable lens allows us to scan vertical cross-sections of ex-
cised intact retina, and to observe glutamate release at bipolar cell terminals across the 
inner plexiform layer (IPL), where different bipolar cell types stratify at different depths. To 
integrate recordings across retinae, and jointly disentangle the feature channels from the 
observed data, it is necessary to remove any batch effects, i.e. inter-experimental variation 
caused by e.g. temperature, jitter, bleaching, indicator concentration and/or laser intensity.

Figure 1 | Overview of 2P microscope equipped with mouse retina-specific visual stimulator and elec-
trically tunable lens (ETL). 
For simplicity, most lenses and silver mirrors (M) were omitted. A, A schematic diagram of excitation / detec-
tion pathway of 2P microscope. Dashed box: stimulus pathway, where grey area represents the “light engine” 
of DLP LightCrafter 4500 (Texas Instruments, Dallas, TX, USA), adapted for green/UV projection (by EKB 
Technologies Ltd, Israel). Inset: cross section and working principle of ETL-16-40-TC (Optotune, Switzerland). 
B, Photography of partial setup where ETL is installed (laser safety shielding removed). Cold mirror (CM), di-
chroic mirror (DM), band pass filter (BP), GaAsP photomultiplier tube (PMT), x-y galvo scanner (Mscan), relay 
lens (RL), telescope (T). (A), adapted from [1] & [Euler, Franke, Baden “Studying a light sensor with light: mul-
tiphoton imaging in the retina”, in press]; (A) inset from [2].

Figure 2 | Performance of axial scanning.
A, Steady state axial (z) position as a function of voltage input to ETL driver; each measurement (grey dots) 
was done in random sequence of input voltage (n=5); the red line is sigmoidal fit of mean values. B, Axial 
scans in sulforhodamine 101 (SR101) solution showing change in fluorescence intensity along the vertical axis 
for two different voltage offsets. Left: scan fields (x-z scan w/256x256 pixels @ 2ms/line; zoom xy, z=1.0, 0.8). 
Right: Axial fluorescence intensity distribution. C, Example of point spread function (PSF) in the x-y plane and 
along z-axis (measured with 170 nm beads, λPeak=515 nm). PSF-xy: 0.39-0.53 µm; PSF-z: 2.09-2.17 µm. 
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Here, we introduce a fast axial x-z scanning, a method to image across the whole IPL in the 
intact, whole-mount retina. It  allows us to record from all bipolar cell channels virtually si-
multaneously. We equipped a 2P microscope (Fig. 1; see [1]) with an ETL, which enables 
fast focus shifting along the z axis (F. Helmchen, personal communication; see also [3]).
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Figure 3 | Glutamate imaging in the IPL.
A, Axial scan of a whole-mount retina. Left: AAV-transduced iGluSnFR expression; right: tdTomato expression 
under the control of the ChAT promotor (x-z scan w/256x160 pixels @ 2ms/line). IPL borders and ChAT bands 
were defined manually. B, Distance between ChAT bands (13.52 ± 0.99 μm). C, Relative positions of IPL bor-
ders according to ChAT bands (INL: 1.92 ± 0.13; GCL: -1.09 ± 0.13). D, Examplary ROIs (left) and their re-
sponses (as change in glutamate release, ∆glu) to a local (center) and a global (right) chirp light stimulus. 
Panel B & C: from n=1/2/10 mouse/retinas/scans. 
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Light stimulus-evoked glutamate release across the IPL were recorded using iGluSnFR [4] 
unbiquitously expressed via AAV transduction (AAV2.hSynapsin.iGluSnFR or 
AAV2.7m8.hSynapsin.iGluSnFR; for AAV2.7m8 modification, see [5]). Bipolar cells exhibit 
functional layering across the IPL [6].
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Figure 4 | Batch effects in axial scan recordings.
A, Traces from ON-layers of IPL in three axial scan recordings in response to local chirp stimulus. B, First two 
PCA components of local chirp responses, coloured by IPL depth, before and after linear batch correction. C, 
First two PCA components of local chirp responses, coloured by recording, before and after batch correction. 
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Functional Layering In The IPL

Batch effects are variations in observed signals which arise from experimental factors, in-
cluding temperature, fluorophore concentration, and the age or health of a particular retina. 
The magnitude of these effects can be large enough to obscure meaningful differences be-
tween bipolar cell types, making signal classification difficult. 

Qualitatively, PCA plots suggest that the order of contributed variance is often:

On/Off split > Batch variability > Cell types
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Figure 7 | Batch Effect Correction In A Linear Neural Encoding Model.
A, Schematic representaton of linear neural encoding model with batch correction (extending [7]). B, Temporal 
kernels learnt from encoding model fitted to IPL ON-layer responses to a natural movie stimulus. C, Temporal 
kernels learnt from encoding model, corresponding to the ROIs in B, fitted to responses to the local chirp 
stimulus. D, Estimated stretch factor for linear neural encoding models fitted to responses to natural movie 
stimulus and local chirp stimulus (Pearson’s r: p = 0.82, p < 10-8).   

• The ETL allows the complete IPL to be scanned in a single recording

• When biological variation can be modelled and stimuli are identical, linear models can be  
 deployed successfully to remove batch effects

• Where those conditions are untrue, a neural encoding model with a parametrised tempo- 
 ral kernel and a batch specific stretch allows cell types to be grouped across batches
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Figure 8 | Identification Of Functional Cell Types Following Batch Correction.
A, Estimated temporal kernels for ROIs at different IPL depths, assigned to depth-wise clusters. B,  Stratifica-
tion profiles of bipolar cell axon terminals for each type from a previously published electron microscopy data-
set [9] (top). Estimated readout weights for temporal kernels from linear encoding model (bottom). C, Esti-
mated temporal kernels from linear encoding model shown in B. 
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We then incorporated the batch correction into a 
linear neural encoding model, where the temporal 
kernel was scaled by a batch-specific parameter α:
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Linear Model of Batch Effects
Our initial approach was to use a linear fixed effects model to estimate the batch effect:
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Response Kinetics Hypothesis
Next, we tried to explore the nature of the batch corrections. Visual inspection of Fig. 4a 
suggests that batches have different response kinetics. This could be due to fluctuations of 
the temperature of the tissue and has also been suggested recently by [7]. To assess this, 
we computed the event-triggered-average temporal kernels and plotted the mean temporal 
kernel for each batch, finding that in the corrected data these become aligned (Fig 6a). 
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Figure 5 | Batch Effect Correction Using Linear Models.
A, Estimated r2 for effects of ON-OFF, batch and depth in a linear model fitted to the local chirp response data. 
B, Response of IPL ON-layers in three recordings to local chirp stimulus, before and after linear batch correc-
tion. C, Linear model predictions for IPL responses at varying depths to local chirp stimulus, with and without 
batch effect correction.

Figure 6 | Temporal Kinetics After Batch Effect Correction.
A, Mean event-triggered-average temporal kernels for each batch, before and after linear correction. B, Exam-
ple kernels for model of “stretch” effect, for varying stretch parameters. C, Estimated stretch for each ROI, col-
oured by retina. One way ANOVA of retina effect on response speed: F ≈ 168.86, p < 10-8.
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