
Defining Latent Distributions

Since the softmax output is positive and sums to one, it can be interpreted as a 
probability measure over a finite set, i.e. a categorical distribution with an associated 
R.V. p(ŷ|x) ~ Cat(y(x)). Across a batch of K inputs, we can encourage the model to 
use all channels equally by maximizing the marginal entropy E[H[ŷ|x]] = H[ŷ].

In the embedding space, we can interpret the y as an activity pattern across the 
neurons e with center z. We can fit a factorized (computationally cheap) Normal 
distribution to this spatial pattern to define a R.V.:

A topological organization in the embedding space is learned by maximizing the 
lower bound on the mutual information written above [4]. Combined, these terms 
encourage neurons that are equally utilized, but have locally sparse responses within 
the embedding space.
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Abstract

In the space of natural images, continuous real world transformations such as 
rotations or deformations of objects give rise to a smooth, nonlinear low-dimensional 
manifold. It was recently proposed that sparse coding filters represent a discrete 
sampling of this manifold, and that the filters can be ordered in a low-dimensional 
embedding space that preserves the topology of the original data manifold [1]. The 
authors learn this representation by imposing a slowness prior [2], which straightens 
the trajectories of temporal input sequences [3]. The main motivation for our work is 
to build a model based on these ideas, but (1) with a feedforward architecture that 
allows for incorporation into existing CNN models, and (2) a contrastive objective 
function that doesn’t rely on image reconstruction, allows for end-to-end training and 
operates on images rather than videos.

Proposed Model Layer. One layer consists of an overcomplete (dim(x) < N), 
(convolutional) expansion of the input signal, followed by divisive normalization 
(softmax), and then a projection onto a low-dimensional embedding space. The wi 
and E are learned.

Results: Augmenting Classifiers to prevent Shortcut Learning

We trained a model with 2 layers (and a classification layer on top) on a modified 
version of the MNIST dataset that contains a “shortcut pixel” whose value indicates 
the class label [5]. Standard CNNs rely on this shortcut but our unsupervised layers 
force the model to learn the data distribution.
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The Sparse Manifold Transform. (reproduced with permission from [1])

Learned Embedding. With N=256 filters of size 9x9, trained on the MNIST dataset 
and a 2 dimensional embedding space. Left) trained with cross-entropy (CE, H[o,ô] 
between true o and predicted labels ô). Center) additionally maximizing I[x,ẑ]. Right) 
additionally maximizing H[ŷ].

Conclusions and Outlook

● We propose a stackable model layer that maps the data manifold 
into a low dimensional embedding space

● Our model layer can be trained using a simple contrastive loss that 
learns a solution with highly structured filters

● Approximately uniform sampling of the data manifold, with clearly 
evident continuity of feature attributes

● First layer contains oriented filters laid out topologically, similar to the 
orientation tuning maps found in primate V1

“shortcut pixels” 
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