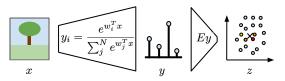

Unsupervised Learning of Image Manifolds with Mutual Information

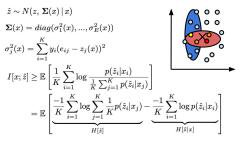
David A. Klindt*1, Johannes Ballé*2, Jonathon Shlens2 & Eero P. Simoncelli³ 1. University of Tübingen, 2. Google Research, 3. HHMI/NYU correspondence: klindt.david@gmail.com



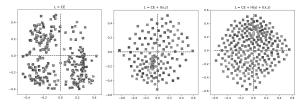
Abstract

In the space of natural images, continuous real world transformations such as rotations or deformations of objects give rise to a smooth, nonlinear low-dimensional manifold. It was recently proposed that sparse coding filters represent a discrete sampling of this manifold, and that the filters can be ordered in a low-dimensional embedding space that preserves the topology of the original data manifold [1]. The authors learn this representation by imposing a slowness prior [2], which straightens the trajectories of temporal input sequences [3]. The main motivation for our work is to build a model based on these ideas, but (1) with a feedforward architecture that allows for incorporation into existing CNN models, and (2) a contrastive objective function that doesn't rely on image reconstruction, allows for end-to-end training and operates on images rather than videos.

The Sparse Manifold Transform. (reproduced with permission from [1])



Proposed Model Laver. One laver consists of an overcomplete (dim(x) < N). (convolutional) expansion of the input signal, followed by divisive normalization (softmax), and then a projection onto a low-dimensional embedding space. The w and F are learned


Defining Latent Distributions

Since the softmax output is positive and sums to one, it can be interpreted as a probability measure over a finite set, i.e. a categorical distribution with an associated R.V. $p(\hat{y}|x) \sim Cat(y(x))$. Across a batch of K inputs, we can encourage the model to use all channels equally by maximizing the marginal entropy $E[H[\hat{y}|x]] = H[\hat{y}]$.

In the embedding space, we can interpret the y as an activity pattern across the neurons e with center z. We can fit a factorized (computationally cheap) Normal distribution to this spatial pattern to define a R.V.:

A topological organization in the embedding space is learned by maximizing the lower bound on the mutual information written above [4]. Combined, these terms encourage neurons that are equally utilized, but have locally sparse responses within the embedding space.

Learned Embedding. With N=256 filters of size 9x9, trained on the MNIST dataset and a 2 dimensional embedding space. Left) trained with cross-entropy (CE, H[o, 6] between true o and predicted labels \hat{o}). Center) additionally maximizing $I[x, \hat{z}]$. Right) additionally maximizing H[ŷ].

Results: Augmenting Classifiers to prevent Shortcut Learning

We trained a model with 2 layers (and a classification layer on top) on a modified version of the MNIST dataset that contains a "shortcut pixel" whose value indicates the class label [5]. Standard CNNs rely on this shortcut but our unsupervised layers force the model to learn the data distribution.

Model	Dataset	sMNIST Train	sMNIST Test	MNIST Test
ResNet [5]		100	-	26.2
iCE fi-RevNet [5]		99.9	-	65.2
2-layer CNN		100	100	43.6
2-layer CNN + L2		100	100	79.1
VIST Linear		100	100	72.9
Linear + L2		100	100	89.4
		99.3	97.7	80.3
2-layer CNN $(\max H[\hat{y}] +$	$I[\hat{z} x])$	99.1	98	93.6
	Model ResNet [5] iCE fi-RevNet [5] 2-layer CNN + L2 Linear Linear + L2 2-layer CNN $(\max I[\hat{y} x])$	ResNet [5] iCE fi-RevNet [5] 2-layer CNN 2-layer CNN + L2 Linear + L2	Model sMNIST Train Train ResNet [5] 100 iCE fRevNet [5] 99.9 2-layer CNN 100 2-layer CNN + L2 100 Linear 100 2-layer CNN (max I [ŷ x]) 99.3	$\begin{tabular}{ c c c c c c c } \hline MMST & sMNIST & sMNIST \\ \hline Train & Test \\ \hline 100 & - \\ -2layer CNN & 100 & 100 \\ Linear & 100 & 100 \\ Linear + L2 & 100 & 100 \\ Linear + L2 & 100 & 100 \\ Linear + L2 & 100 & 100 \\ Linear & 100 & 100 \\ Linear$

Table 1: Models trained on shiftMNIST. Accuracy in (%), 2-layer CNN consists of 2 x [Conv - ReLU - MaxPool], followed by [Linear - ReLU - Linear]. L2 regularization on all trainable parameters is cross-validated.

Conclusions and Outlook

- . We propose a stackable model layer that maps the data manifold into a low dimensional embedding space
- Our model layer can be trained using a simple contrastive loss that . learns a solution with highly structured filters
- . Approximately uniform sampling of the data manifold, with clearly evident continuity of feature attributes
- . First layer contains oriented filters laid out topologically, similar to the orientation tuning maps found in primate V1

References

[1] Chen, Y., Paiton, D., & Olshausen, B. (2018). The sparse manifold transform. In Advances in Neural Information Processing Systems (pp. 10513-10524).

[2] Wiskott, L., & Sejnowski, T. J. (2002). Slow feature analysis: Unsupervised learning of invariances. Neural computation, 14(4), 715-770.

[3] Hénaff, O. J., & Simoncelli, E. P. (2015). Geodesics of learned representations. arXiv preprint arXiv:1511.06394

[4] Hénaff, O. J., Srinivas, A., De Fauw, J., Razavi, A., Doersch, C., Eslami, S. M., & Oord, A. V. D. (2019). Data-efficient image recognition with contrastive predictive coding. arXiv preprint arXiv:1905.09272. [5] Jacobsen, J. H., Behrmann, J., Zemel, R., & Bethge, M. (2018). Excessive invariance causes adversarial vulnerability. arXiv preprint arXiv:1811.00401.